Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.

Identifieur interne : 000573 ( Main/Exploration ); précédent : 000572; suivant : 000574

An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.

Auteurs : Constantine Chrysostomou [États-Unis] ; Erik M. Quandt [États-Unis] ; Nicholas M. Marshall [États-Unis] ; Everett Stone [États-Unis] ; George Georgiou [États-Unis]

Source :

RBID : pubmed:25517993

Descripteurs français

English descriptors

Abstract

Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase.

DOI: 10.1021/cb500755j
PubMed: 25517993
PubMed Central: PMC4372098


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.</title>
<author>
<name sortKey="Chrysostomou, Constantine" sort="Chrysostomou, Constantine" uniqKey="Chrysostomou C" first="Constantine" last="Chrysostomou">Constantine Chrysostomou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quandt, Erik M" sort="Quandt, Erik M" uniqKey="Quandt E" first="Erik M" last="Quandt">Erik M. Quandt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marshall, Nicholas M" sort="Marshall, Nicholas M" uniqKey="Marshall N" first="Nicholas M" last="Marshall">Nicholas M. Marshall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stone, Everett" sort="Stone, Everett" uniqKey="Stone E" first="Everett" last="Stone">Everett Stone</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Georgiou, George" sort="Georgiou, George" uniqKey="Georgiou G" first="George" last="Georgiou">George Georgiou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25517993</idno>
<idno type="pmid">25517993</idno>
<idno type="doi">10.1021/cb500755j</idno>
<idno type="pmc">PMC4372098</idno>
<idno type="wicri:Area/Main/Corpus">000568</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000568</idno>
<idno type="wicri:Area/Main/Curation">000568</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000568</idno>
<idno type="wicri:Area/Main/Exploration">000568</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.</title>
<author>
<name sortKey="Chrysostomou, Constantine" sort="Chrysostomou, Constantine" uniqKey="Chrysostomou C" first="Constantine" last="Chrysostomou">Constantine Chrysostomou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Quandt, Erik M" sort="Quandt, Erik M" uniqKey="Quandt E" first="Erik M" last="Quandt">Erik M. Quandt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marshall, Nicholas M" sort="Marshall, Nicholas M" uniqKey="Marshall N" first="Nicholas M" last="Marshall">Nicholas M. Marshall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stone, Everett" sort="Stone, Everett" uniqKey="Stone E" first="Everett" last="Stone">Everett Stone</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Georgiou, George" sort="Georgiou, George" uniqKey="Georgiou G" first="George" last="Georgiou">George Georgiou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712</wicri:regionArea>
<wicri:noRegion>Texas 78712</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS chemical biology</title>
<idno type="eISSN">1554-8937</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenate Reductases (deficiency)</term>
<term>Arsenate Reductases (genetics)</term>
<term>Arsenates (metabolism)</term>
<term>Arsenates (toxicity)</term>
<term>Arsenites (metabolism)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Drug Resistance, Bacterial (MeSH)</term>
<term>Escherichia coli (drug effects)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Plasmids (chemistry)</term>
<term>Plasmids (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Transformation, Bacterial (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arsenate Reductases (déficit)</term>
<term>Arsenate Reductases (génétique)</term>
<term>Arséniates (métabolisme)</term>
<term>Arséniates (toxicité)</term>
<term>Arsénites (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Escherichia coli (effets des médicaments et des substances chimiques)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Glutathione transferase (génétique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Plasmides (composition chimique)</term>
<term>Plasmides (métabolisme)</term>
<term>Résistance bactérienne aux médicaments (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transformation bactérienne (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Arsenate Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenates</term>
<term>Arsenites</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Arsenates</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Arsenate Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Escherichia coli</term>
<term>Glutathione transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arséniates</term>
<term>Arsénites</term>
<term>Escherichia coli</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Arséniates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Drug Resistance, Bacterial</term>
<term>Gene Deletion</term>
<term>Gene Expression</term>
<term>Genetic Complementation Test</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Oxidation-Reduction</term>
<term>Protein Binding</term>
<term>Transformation, Bacterial</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Domaine catalytique</term>
<term>Délétion de gène</term>
<term>Expression des gènes</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Résistance bactérienne aux médicaments</term>
<term>Test de complémentation</term>
<term>Transformation bactérienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25517993</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8937</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>ACS chemical biology</Title>
<ISOAbbreviation>ACS Chem Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.</ArticleTitle>
<Pagination>
<MedlinePgn>875-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/cb500755j</ELocationID>
<Abstract>
<AbstractText>Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chrysostomou</LastName>
<ForeName>Constantine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Quandt</LastName>
<ForeName>Erik M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marshall</LastName>
<ForeName>Nicholas M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stone</LastName>
<ForeName>Everett</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Georgiou</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Departments of †Chemical Engineering and ‡Biomedical Engineering, and §Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM055090</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01 CA154754</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01 GM055090</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Chem Biol</MedlineTA>
<NlmUniqueID>101282906</NlmUniqueID>
<ISSNLinking>1554-8929</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018053">Arsenites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="D053502">Arsenate Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N5509X556J</RegistryNumber>
<NameOfSubstance UI="C015001">arsenite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N7CIZ75ZPN</RegistryNumber>
<NameOfSubstance UI="C025657">arsenic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053502" MajorTopicYN="N">Arsenate Reductases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018053" MajorTopicYN="N">Arsenites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024881" MajorTopicYN="N">Drug Resistance, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014169" MajorTopicYN="N">Transformation, Bacterial</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25517993</ArticleId>
<ArticleId IdType="doi">10.1021/cb500755j</ArticleId>
<ArticleId IdType="pmc">PMC4372098</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36039-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10829079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 11;275(32):24798-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10783391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jul 20;310(4):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11453697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2001 Aug;14(8):1051-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Nov 15;360(Pt 1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11695986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):311-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Oct 2;529(1):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 4;278(27):24476-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Dec;185(23):6780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2003 Dec 1;53(4):777-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14635120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Jul 15;381(Pt 2):405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15056070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 Sep;13(9):2330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1974 Sep;119(3):736-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4604283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1991 Mar-Apr;4(2):131-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1782341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1409657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1993 Jan-Feb;6(1):102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8448339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(4):981-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7860609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jul;13(9):819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 22;272(34):21084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 May 15;93(4):617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9604936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 May;7(5):1233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9605329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Aug 7;281(1):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1999 Oct;23(5):615-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2006;2:2006.0008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2005;12(5):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Sep 8;362(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Oct;15(10):2217-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17008712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Dec 1;364(3):400-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Dec;24(12):2716-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17884825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Mar 21;377(2):323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17968-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Feb;7(2):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(3):3527-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22753509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 May;97(9):3827-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23546422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Chrysostomou, Constantine" sort="Chrysostomou, Constantine" uniqKey="Chrysostomou C" first="Constantine" last="Chrysostomou">Constantine Chrysostomou</name>
</noRegion>
<name sortKey="Georgiou, George" sort="Georgiou, George" uniqKey="Georgiou G" first="George" last="Georgiou">George Georgiou</name>
<name sortKey="Marshall, Nicholas M" sort="Marshall, Nicholas M" uniqKey="Marshall N" first="Nicholas M" last="Marshall">Nicholas M. Marshall</name>
<name sortKey="Quandt, Erik M" sort="Quandt, Erik M" uniqKey="Quandt E" first="Erik M" last="Quandt">Erik M. Quandt</name>
<name sortKey="Stone, Everett" sort="Stone, Everett" uniqKey="Stone E" first="Everett" last="Stone">Everett Stone</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000573 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000573 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25517993
   |texte=   An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25517993" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020